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On the Intensity Calculation of Multiple Reflexions of X-rays 
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Expressions are derived for the set of structure factors, and for the polarization and Lorentz factors due 
to the multiple reflexion of X-ray~. 

Introduction 

If there are more than two points of the reciprocal 
lattice (its origin included) sufficiently near to the 
reflexion sphere, the Bragg condition is fulfilled simul- 
taneously for several directions of Bragg reflexion 
(simultaneous reflexion). In this case every reflexion 
beam necessarily finds several possibilities of being 
reflected again and again (serial reflexion). Therefore 
simultaneous reflexion and serial reflexion are two sides 
of the same physical fact, multiple reflexion. 

Frequently such multiple reflexions (in their simplest 
form known as double reflexion, Umweganregung, 
Renninger effect) are advantageously used for investi- 
gating the perfection of crystal surfaces and deter- 
mining lattice parameters (Renninger, 1937; Cole, 
Chambers & Dunn, 1961; Melle, 1974). In some cases 
multiple reflexions complicate the interpretation of the 
intensity of reflexion (Renninger, 1960; Moon & Shull, 
1963), for example in the calculation of structure fac- 
tors. Therefore it is necessary to be quite clear about 
the set of structure factors which are involved in 
multiple reflexion. It is also necessary to know the 
polarization factor and the Lorentz factor for the 
registration technique mainly used (generalized equi- 
inclination technique). 

The set  o f  structure factors  

There are p points of the reciprocal lattice sufficiently 
near to the reflexion sphere and determined by the 
vectors h,, (n=O, 1 , 2 , . . . p - l ) .  These points of the 
reciprocal lattice are conjugated to the structure factors 
F,. The intensities of the p reflexions determined by the 
wave vectors K. ('first generation') are essentially in- 
fluenced by the structure factors F,. Each of these p 
reflexion beams may be considered as an incident beam 
(James, 1958). If this is the case for each index m, the 
reciprocal-lattice points described by the vectors hm_ n 

=hm-hn (m=O, 1,2 . . . .  p - l )  are necessarily on the 
reflexion sphere. Thus a new set of beams is produced 
('second generation'), and also a new set of structure 
factors Fm-,, = FOlm-n)  influencing the intensity of these 
beams. 

Because Fro-,, and F,,_m are conjugate complex it is 
possible to arrange the structure factors of the 'first and 

second generation' in the form of a Hermitian matrix 

F = (F,_j) (i,j=O, 1 , 2 . . . p - 1 ) .  (1) 

The vectors of the reciprocal lattice involved are de- 
scribed by a skew symmetric matrix 

h=(hi_j). (2) 

New directions of beams are not generated because 
the vectors hm-,, are produced by a simple translation 
of the vectors h,. So the set of wave vectors can be ar- 
ranged in a single-column matrix 

K=(K,). (3) 

In an analogous manner a 'third generation' of re- 
flexions arises, with the vectors h~- , -hm-, ,  ( /=0,  
1 . . . p -  1) participating. Now 

hz_,, - h,,,_,, = hi_,,, (4) 

and the corresponding structure factors are already in- 
cluded in the 'first and second generation', but there 
are no new directions of the beams. In the 'first genera- 
tion' the direction of K, is conjugated to the structure 
factor F,, but in the 'second generation' already the 
whole set of the structure factors Fro-, influences the 
intensity of the beam in the direction of K,. Therefore 
all structure factors Fro-, are to be taken into account 
in the calculation of the intensity. How this is to be 
performed depends on the perfection of the crystal- 
lattice and the degree of coherence of the X-rays. 

Polar izat ion  factors  

The influence of the reflexion on unpolarized X-rays 
may be described by the matrix 

P~= (10 0 ) (5) 
cos 20i_1. i 

where 20~-1,t is the Bragg angle between the ( i - 1 ) t h  
beam and the ith beam. 

In order to calculate the polarization correction of 
further reflexions it is useful to consider the components 
of the optical field parallel and perpendicular to the 
planes of incidence (Fig. 1). For each of these compo- 
nents the polarization correction has to be determined. 
The calculations can be readly surveyed if matrices for 
the spatial rotation of the coordinate systems described 
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by the planes of indicidence are used as well. By means 
of the transformation matrix 

( COS Ipti_l, l s in  gh -1 ,  ~ / 
T t=  \ - s inqh_l ,~  cos V l - l , d  

(6) 

we obtain after j reflexions the resulting polarization 
factor 

P = ½PiTt P2. • • T j_ i P j _  1 (7) 

where ~i-1,~ is the angle between the normal of the 
( i - 1 ) t h  plane of incidence and the ith one. 

After performing the matrix multiplication (7) the 
matrix elements are squared and added in the case of a 
mosaic crystal. For two reflexions we get with Zacha- 
riasen (1965) 

cos 20o-cos  20or cos  2012 
COS ~12 . . . . . . . . . . . . . . . . . . . . . . .  (8) 

sin 2001 sin 012 

the polarization correction for the mosaic crystal 

P = {[cos 2 20ol + cos 2 2012 

+(cos 200-cos  2001 cos  20t2) 2] (9) 

72 mt 

Fig. 1. Illustrating the nomenclature used in calculation of 
polarization factors. E~ indicates the electric field compo- 
nent in the plane of incidence and E,~ the component  normal 
to it. The z axis is in the plane of indicidence and normal 
to the incident beam. 

Sphere of reflexion 
/ 

oration 

w*l[H 

;lw, 
Fig. 2. Illustrating the nomenclature used in calculation of 

Lorentz factors. 

in agreement with the result of Caticha-Ellis (1969), 
where 200 is the angle between the incident beam and 
the doubly diffracted beam. 

Lorentz  factor 

For the recording of multiple reflexions it is convenient 
to use a generalized equi-inclination technique. 

The generalized equi-inclination technique makes it 
possible to record reflexions represented by reciprocal- 
lattice points arranged in any plane of the reciprocal 
lattice perpendicular to the axis of rotation. We gain 
the generalized Lorentz factor by making use of the 
expression derived by Laue (1960) for the goniometer 
technique. Substituting the distance M M  in Laue's 
figure by ~.  a with ~ = 1/2 cos 00 we obtain 

1 I 
L ~  _ ~ (10) 

Q cos Z cos 00 cos Z 

By using the relations of the sperical trigonometry 
we obtain [triangle OBC, Fig. 2) 

cos Z = sin 20li cos 6 (11) 

and (triangle OAB)  

sin e=  - s i n  0o cos 20u+cos  00 sin 20lj sin ~ (12) 

and 

COS ~ = 

{COS 2 0 0 sin 2 20ij--(sin e + sin 00 cos 201j)2} 1/2 
(13) 

cos 0o sin 20lj 

With sin e = H .  2 the Lorentz factor for the generalized 
equi-inclination technique may be written as 

Lli = {cos 2 0o sin 2 20i~ 
- ( s i n  e+s in  0o cos 20li)2} -1/2 . (14) 

This expression also contains the special cases for the 
Bragg reflexion (e=0, 00=0), the rotating crystal 
method (sin e = 2  sin ~0 sin 0), and equi-inclination 
technique, (e=0o=/Z) where q~ is the angle between the 
axis of rotation and the reflecting plane and (n/2-/z)  is 
the angle between the axis of rotation and the incident 
X-ray beam. 
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